
mailto:larkin@cray.com


 Cray has a long tradition of high performance compilers on Cray 
platforms  (Traditional vector, T3E, X1, X2)

 Vectorization

 Parallelization

 Code transformation

 More…

 Investigated leveraging an open source compiler called LLVM

 First release December 2008

OLCF/NICS Joint Hex-Core Workshop, May 2010 Slide 2



Slide 3

X86 Code 

Generator

Cray X2 Code 

Generator

Fortran Front End

Interprocedural Analysis

Optimization and 

Parallelization

C and C++ Source

Object File

C
o

m
p

il
e
r

C & C++ Front End

Fortran Source C and C++ Front End 

supplied by Edison Design 

Group, with Cray-developed 

code for extensions and 

interface support

X86 Code Generation from 

Open Source LLVM, with 

additional Cray-developed 

optimizations and interface 

support

Cray Inc. Compiler 

Technology

OLCF/NICS Joint Hex-Core Workshop, May 2010



 Standard conforming languages and programming models
 Fortran 2003
 UPC & CoArray Fortran

 Fully optimized and integrated into the compiler

 No preprocessor involved

 Target the network appropriately:

 GASNet with Portals

 DMAPP with Gemini & Aries

 Ability and motivation to provide high-quality support for custom 
Cray network hardware

 Cray technology focused on scientific applications
 Takes advantage of Cray’s extensive knowledge of automatic 

vectorization
 Takes advantage of Cray’s extensive knowledge of automatic 

shared memory parallelization
 Supplements, rather than replaces, the available compiler 

choices 
OLCF/NICS Joint Hex-Core Workshop, May 2010



 Make sure it is available

 module avail PrgEnv-cray

 To access the Cray compiler

 module load PrgEnv-cray

 To target the various chip

 module load xtpe-[barcelona,shanghi,istanbul]

 Once you have loaded the module “cc” and “ftn” are the Cray 
compilers

 Recommend just using default options

 Use –rm (fortran) and –hlist=m (C) to find out what happened

 man crayftn

Slide 5OLCF/NICS Joint Hex-Core Workshop, May 2010



 Excellent Vectorization 
 Vectorize more loops than other compilers

 OpenMP 3.0
 Task and Nesting

 PGAS:  Functional UPC and CAF available today

 C++ Support

 Automatic Parallelization
 Modernized version of Cray X1 streaming capability

 Interacts with OMP directives

 Cache optimizations
 Automatic Blocking

 Automatic Management of what stays in cache

 Prefetching, Interchange, Fusion, and much more…

Slide 6OLCF/NICS Joint Hex-Core Workshop, May 2010



 Loop Based Optimizations
 Vectorization
 OpenMP

 Autothreading

 Interchange
 Pattern Matching
 Cache blocking/ non-temporal / prefetching

 Fortran 2003 Standard; working on 2008

 PGAS (UPC and Co-Array Fortran)
 Some performance optimizations available in 7.1

 Optimization Feedback:  Loopmark

 Focus

Slide 7OLCF/NICS Joint Hex-Core Workshop, May 2010



 Cray compiler supports a full and growing set of directives 
and pragmas

!dir$ concurrent

!dir$ ivdep

!dir$ interchange

!dir$ unroll

!dir$ loop_info [max_trips] [cache_na] ... Many more

!dir$ blockable

man directives

man loop_info

Slide 8OLCF/NICS Joint Hex-Core Workshop, May 2010



 Compiler can generate an filename.lst file.
 Contains annotated listing of your source code with letter indicating important 

optimizations

%%%    L o o p m a r k   L e g e n d    %%%

Primary Loop Type        Modifiers

------- ---- ---- ---------

a - vector atomic memory operation

A  - Pattern matched       b - blocked

C  - Collapsed                 f - fused

D  - Deleted                    i - interchanged

E  - Cloned                     m - streamed but not partitioned

I  - Inlined p - conditional, partial and/or computed

M  - Multithreaded         r - unrolled

P  - Parallel/Tasked        s - shortloop

V  - Vectorized               t - array syntax temp used

W  - Unwound               w - unwound

Cray Inc. Confidential

Slide 9



• ftn –rm …       or    cc –hlist=m …

29.  b-------<       do i3=2,n3-1

30.  b b-----<          do i2=2,n2-1

31.  b b Vr--<             do i1=1,n1

32.  b b Vr                   u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

33.  b b Vr         >                + u(i1,i2,i3-1) + u(i1,i2,i3+1)

34.  b b Vr                   u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)

35.  b b Vr         >                + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)

36.  b b Vr-->             enddo

37.  b b Vr--<             do i1=2,n1-1

38.  b b Vr                   r(i1,i2,i3) = v(i1,i2,i3)

39.  b b Vr         >                     - a(0) * u(i1,i2,i3)

40.  b b Vr         >                     - a(2) * ( u2(i1) + u1(i1-1) + u1(i1+1) )

41.  b b Vr         >                     - a(3) * ( u2(i1-1) + u2(i1+1) )

42.  b b Vr-->             enddo

43.  b b----->          enddo

44.  b------->       enddo



ftn-6289 ftn: VECTOR File = resid.f, Line = 29 

A loop starting at line 29 was not vectorized because a recurrence was found on "U1" between lines 
32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 29 

A loop starting at line 29 was blocked with block size 4.

ftn-6289 ftn: VECTOR File = resid.f, Line = 30 

A loop starting at line 30 was not vectorized because a recurrence was found on "U1" between lines 32 
and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30 

A loop starting at line 30 was blocked with block size 4.

ftn-6005 ftn: SCALAR File = resid.f, Line = 31 

A loop starting at line 31 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 31 

A loop starting at line 31 was vectorized.

ftn-6005 ftn: SCALAR File = resid.f, Line = 37 

A loop starting at line 37 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 37 

A loop starting at line 37 was vectorized.



 Tuned Performance
 Vectorization (We vectorize too much)

 Non-temporal caching

 Cache blocking

 Many end-cases

 Spilling

 Scheduling

 Still a young compiler

Cray Inc. Confidential

Slide 12



 -hbyteswapio

 Link time option

 Applies to all unformatted fortran IO

 Assign command

With the PrgEnv-cray module loaded do this:

setenv FILENV assign.txt

assign -N swap_endian g:su

assign -N swap_endian g:du

 Can use assign to be more precise

Cray Inc. Confidential

Slide 13



 OpenMP is ON by default
 Optimizations controlled by –Othread#  

 To shut off use –Othread0 or  –xomp or –hnoomp

 Autothreading is NOT on by default; 
 -hautothread to turn on

 Modernized version of Cray X1 streaming capability

 Interacts with OMP directives

If you do not want to use OpenMP and have OMP directives 
in the code, make sure to make a run with OpenMP shut 

off at compile time

Slide 14OLCF/NICS Joint Hex-Core Workshop, May 2010



 An OpenMP task is an explicit region of code whose 
execution can be deferred and/or executed in parallel with 
the surrounding code
 Completion is guaranteed by synchronization or end of 

parallel region

 Must be contained inside a OMP parallel region

 A task is “put on a queue” to be executed “later”

 Any thread of the same parallel region that is sitting on a sync 
point can grab a task off the queue and execute it

 Sort of like “futures” but with limitations
 Don’t have ID’s, must wait for all or none

 But maybe are good enough?

Slide 15OLCF/NICS Joint Hex-Core Workshop, May 2010



 Nested OpenMP

 OMP parallel region inside of an OMP parallel region

 “New threads” are used at each level
 Need to use new ENV VARS to control nesting

 Need to use ENV VARS not in OMP standard for better control

 OMP Tasks inside of parallel regions

 Can be nested

 Can be both more and less natural way of programming

OLCF/NICS Joint Hex-Core Workshop, May 2010



!$omp parallel do …

do i=1,4

call complex_matmul(…)

enddo

Subroutine complex_matmul(…)

!$omp parallel do private(j,jend,jsize)! num_threads(p2)

do j=1,n,nb

jend = min(n, j+nb-1)

jsize = jend - j + 1

call zgemm( transA,transB, m,jsize,k,                        &

alpha,A,ldA,B(j,1),ldb, beta,C(1,j),ldC)

enddo

Slide 17OLCF/NICS Joint Hex-Core Workshop, May 2010



Slide 18

0

10

20

30

40

50

60

70

80

Serial ZGEMM High Level OMP 
ZGEMM 4x1

Nested OMP 
ZGEMM 3x3

Nested OMP 
ZGEMM 4x2

Nested OMP 
ZGEMM 2x4

Low level OMP 
ZGEMM 1x8

G
Fl

o
p

s

Parallel method and Nthreads at each level

4 x ZGEMM 1000x1000

OLCF/NICS Joint Hex-Core Workshop, May 2010



Slide 19

0

5

10

15

20

25

30

35

Serial ZGEMM High Level OMP 
ZGEMM 4x1

Nested OMP 
ZGEMM 3x3

Nested OMP 
ZGEMM 4x2

Low Level ZGEMM 
1x8

G
Fl

o
p

s

Parallel method and Nthreads at each level

4 x ZGEMM 100x100

OLCF/NICS Joint Hex-Core Workshop, May 2010



 Nested omp can GREATLY expand the amount of 
parallelism one can attack using OpenMP

 Most people set the environment variable via 
omp_num_threads
 This, as currently defined, is not adequate for nested parallel 

regions

 Using the “num_threads” clause may be both tricky and 
impractical

 Cray has invented its own cray_omp_num_threads variable

 Nested parallel regions is a relatively static distribution

 OMP tasking may be a way of getting around some or all of 
these issues

Slide 20OLCF/NICS Joint Hex-Core Workshop, May 2010



 Performance Enhancements (7.2)

 AMD Magney Cours Support (Coming Soon)

 Gemini Support (Coming Soon)

 Support for future processors and features 
(Coming Soon.



 Cray Compiler is an interesting alternative for some 
codes

 7.2 provides a lot of performance enhancements

 7.3 will provide some interesting new features

 Unique and different capabilities can result is 
significantly different performance.

 Gemini and PGAS will make the Cray compiler even 
more relevant.

 We are interested in helping you, please send your 
feedback, good or bad

Slide 22OLCF/NICS Joint Hex-Core Workshop, May 2010




